MNE 943: Radiation Heat Transfer – Fall 1998

Catalog Description: (3) I. Basic theories of thermal radiation, shape factors; exact and approximate solutions of integral equations of radiation heat transfer between solid surfaces with absorbing and non-absorbing media. Three hours rec. a week. Pr.: ME573

Instructors: J. K. Shultis, Office WD-137b, (913) 532-5626; e-mail jks@ksuvm.ksu.edu Office hours: Open office or by appointment. Kirby Chapman, Office RA-???, (913) 532-5610; e-mail chapman@me.ksu.edu

Textbook: R. Seigel and J.R. Howell, *Thermal Radiation Heat Transfer*, 3rd ed., Hemisphere, New York, 1992.

Supplementary References: J.K. Shultis, Radiative Transfer in Interacting Media, class handout, 1998.

Prerequisites: (1) Calculus through differential equations (2) Programming skills (C or FOR-TRAN) (3) Physical science/engineering BS

Topics:

- Introduction (Chapman)
 Basic radiation concepts: radiation intensity, black body radiation, Planck distribution, Wien's law, grey surfaces
 Emissivity, absorptivity, reflectivity
 Kirchoff's laws
- 2. Configuration Factors (Chapman) Configuration factors between two surfaces Radiation heat exchange between surfaces in non-interacting media Enclosure analyses
- 3. Interacting Media (Shultis)

Wave-particle duality of radiation: photoelectric effect, photon and electron scattering Quantitites used to quantify the radiation field Optical properties of a medium: extinction, absorption and scattering coefficients Derivation of radiative Transfer Equation (RTE) Explicit forms of the streaming term in the RTE Photon Reactions: elastic and inelastic scattering mechanisms, capture interactions Differential scattering coefficient and the phase function

4. Radiative Transfer in Gases (Shultis)

Photoexcitation and radiative transitions Calculation of Extinction and Emission coefficients Local thermodynamic equilibrium (LTE) and its consequences Steady-state RTE with LTE and elastic scattering Approximations: isotropic scattering, grey approximation, picket fence model, plane geometry.

- 5. Numerical Solution of the RTE (Shultis) RTE in plane-geometry and boundary conditions Discrete-ordinates method Multi-flux Methods Differential or Diffusion Approximation
- 6. Application to Combustion of Particle Suspensions (Shultis) Heat generation from burning carbonaceous particles Optical properties Iterative solution for temperature and radiation intensity Ignition

Prepared by: J. Kenneth Shultis, Professor. 12/22/98