1. Indicate whether the following statements are true (T) or false (F). [20 points]

() The atomic number of the isotope 16O is 16.

() The number of atoms in a gram of matter is equal to Avogadro’s number.

() The L-shell of a neutral 14N atom contains 5 electrons.

() The deBroglie wavelength of an electron decreases as the speed of the electron increases.

() We can predict when a given radioactive atom will disintegrate if we know the half-life of the radionuclide species.

() Matter appears to be continuous, rather than discrete, because the nucleus of each atom is over 50% the size of the atom itself.

() The Q-value of a reaction can be defined in terms of either the rest masses or the kinetic energies of the constituents (reactants and products).

() A beta particle is heavier than a neutron.

() The lifetime of a star is directly proportional to its size.

() Fusion is the process whereby an electron and a positron annihilate.

() 14C is produced in the earth’s atmosphere via the reaction 14N$(n,p)^{14}$C.

() Alpha particles are the preferred radiation to measure sheet metal thickness.

() The half-life of 60Co is greater than 5 y.

() The natural abundance of 2H on earth is 1.5%.

() Delayed neutrons from fission products are useful in helping us control nuclear fission reactors.

() Inelastic scattering is an endoergic reaction.

() Fission has been used for power production rather than fusion because fission reactions yield more energy per nucleon than do fusion reactions.

() On average, we receive more than 2 rem/y from natural background radiation.

() PET is an acronym for practical electron tomography.

() Radioactive tracers can be used to measure the volumetric flow rate of a river or open stream.
2. Consider the binary reaction $^6\text{Li}(n,p)^6\text{He}$.
 (a) What is the Q-value for this reaction? [5 points]
 (b) What is the kinematic threshold for this reaction? [5 points]
 (c) What is the Coulombic threshold for this reaction? [5 points]
 (d) What is the minimum kinetic energy that the products can have? [5 points]

3. A small ^{99m}Tc radioisotope source is located inside a collimator that directs a nearly parallel beam of photons onto a sample of water. Initially, the intensity of all the ^{99m}Tc photons is $2 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$.
 (a) What is the intensity of all the photons 24 hours later? [5 points]
 (b) What is the energy of the dominant (highest frequency of emission) photon emitted by ^{99m}Tc? [5 points]
 (c) What is the average distance these photons travel in water before an interaction? [5 points]
 (d) What is the initial rate, per unit volume, of photoelectric interactions at this energy in the water? [5 points]

4. Consider a sample of natural lithium.
 (a) What is the thermal-neutron macroscopic scattering cross section (also called the linear scattering interaction coefficient) of this sample? [5 points]
 (b) What is the macroscopic capture cross section for thermal neutrons of this sample? [5 points]

5. A 25-year old female dental hygienist receives a whole body X-ray dose of 4.0 rad in one exposure because of lax practices in the office.
 (a) Express this dose in grays (Gy). [5 points]
 (b) Estimate the probability she will die of radiogenic cancer sometime in the future as a result of this exposure. [5 points]
 (c) Estimate the probability that her child born when she is 30 years old will have some type of genetic disorder (use UNSCEAR data). [5 points]

6. Consider a homogeneous mixture of graphite and uranium with a carbon-to-uranium atom ratio of 1,500:1. The uranium is enriched to 1.0 atom-% in ^{235}U. The remainder of the uranium is the isotope ^{238}U.
 (a) Calculate the thermal fission factor η for this material. [5 points]
 (b) Calculate the thermal fission factor f for this material. [5 points]
 (c) Can a critical assembly be made using this material? Explain. [5 points]