NE 602: RADIATION PROTECTION ENGG. Final Examination

Open books and notes.

- 1. (a) What is the temperature change in a small parcel of dry air that is adiabatically displaced downward a distance of 50 meters? (b) Explain how this temperature change would be affect if the air being moved were humid vapor. DATA: c_p for dry air is 1.0035 kJ kg⁻¹ K⁻¹. [15 points]
- 2. ¹³⁸Xe (half life 14.2 min) is released at a constant rate of 10^6 Bq h⁻¹ at an elevation of 75 m. What is the ground-level concentration C {Bq m⁻³} at a location directly downwind 2 km distant from the release point if the wind speed is 2 m s⁻¹ on a day when the atmospheric stability is class B? Assume flat terrain and the Pasquill-Gifford diffusion parameters. [25 points]
- 3. The ground level concentration of molecular radioiodine (I_2) over a pasture under neutral atmospheric conditions is measured to be 1.5 MBq m⁻³. Estimate the rate at which radioiodine is deposited on the pasture grass in Bq kg⁻¹. [15 points]
- 4. 15 TBq of a very long lived radionuclide is accidentally discharged into river which has an average width of 50 m, and average depth of 1.5 m, and a flow rate of 70000 m³ per hour. The longitudinal dispersion coefficient D_x for this river is known to be about 20 m² s⁻¹. What will be the maximum concentration of this radionuclide at a location 20 km downstream from the accident site? [25 points]
- 5. The average US adult human consumes about 26 g d⁻¹ of poultry. (a) If this average human were to consume poultry which ingest 2 pCi d⁻¹ of ¹³⁷Cs from contaminated feed, estimate the annual ¹³⁷Cs activity consumed by the human. (b) What would be the annual committed dose equivalent (Sv) received by the red marrow of such an individual? [20 points]