

Redesign of an Undergraduate Controls Laboratory with an Eye
toward Accommodating Future Upgrades

Jacob Wieneke, Dale Schinstock, Warren N. White, and Guoqiang Hu

Abstract—This paper describes a recent and very
advantageous upgrade of the undergraduate controls
laboratory in the Mechanical and Nuclear Engineering
Department at Kansas State University. The current lab has
been in use for about a decade. Details regarding the original
hardware fundamental to the laboratory activities, including
the embedded digital signal processor (DSP) and the brushless
DC motor stand (called the “Motorlab”), are presented and a
summary of each of the fourteen weekly lab exercises is
included. The DSP control program and PC user interface (UI)
were each written in C. In order to accommodate future lab
needs and to ease the maintenance burden, the embedded DSP
was replaced by a PC running Real-Time LabVIEW from
National Instruments (NI) and a NI data acquisition card. The
original lab software was replaced with programs produced
graphically in LabVIEW, known as Virtual Instruments (VIs).
The VIs implement the controller on the real-time PC as well
as the user interface on a host PC. Both the embedded DSP
and the LabVIEW controllers are able to close the loop on the
laboratory equipment with a 10 kHz, hard real-time, sample
rate.

I. INTRODUCTION
laboratory component attached to an undergraduate
controls lecture is an excellent way of both reinforcing

lecture material and providing hands-on experience to the
students. Applying lecture principles to actual hardware, the
theoretical issues and tools are demonstrated to be practical.

The subject of creation and organization of control
laboratories is one that has been addressed in technical
literature for several decades. An example of some early
work is the University of Minnesota digital control lab
reported by Bailey and Waltz (1975). Over time, the
direction of control laboratory development has broadened
from traditional “lab bench and hardware” environment to
include remote experimentation through the Internet and
virtual laboratories. Ramakrishnan et al. (2000) describe a

Manuscript received September 22, 2009. This work was supported in

part by the Mechanical and Nuclear Engineering Department of Kansas
State University. The authors gratefully acknowledge the assistance.

J. Wieneke is a graduate student in Mechanical and Nuclear Engineering
at Kansas State University, Manhattan, KS 66506 USA (e-mail:
jwieneke@ksu.edu).

 D. Schinstock is with the Mechanical and Nuclear Engineering
Department, Kansas State University, Manhattan, KS 66506 USA (e-mail:
dales@ksu.edu).

W. N. White is with the Mechanical and Nuclear Engineering
Department, Kansas State University, Manhattan, KS 66506 USA (phone:
785-532-2615, fax: 785-532-7057, e-mail: wnw@ksu.edu).

G. Hu is with the Mechanical and Nuclear Engineering Dept., Kansas
State University, Manhattan, KS 66506 USA (e-mail: gqhu@ksu.edu).

web based means of controlling the liquid level in a tank.
Valera et al. (2005) present virtual process control and
virtual robotic control laboratories. It is easy to appreciate
the motivation behind these new development directions in
light of limited resources, limited space, and providing large
classes with the ability to perform exercises within a flexible
schedule. However convenient such laboratories might be,
the original “lab bench and hardware” environment still has
merit.

The implementation of real-time control in an
undergraduate laboratory follows several familiar paths,
such as using an embedded DSP in a host computer, running
real-time control under Windows, or using an external
computer for real-time control. A popular approach is to use
Real-time Workshop from MATLAB to create and
download control software for external computers and DSP
devices. An example of such an application is presented by
Spong (1999). An example of using an external computer
for data acquisition and real-time control is Kapila et al.
(2000), where the Wincon software and the Multi-Q
hardware were used for control.

LabVIEW Real-Time has also been utilized for control.
Astilean and Folea (2006) used this software to program an
embedded processor used in manufacturing applications.
Mrad et al. (2000) used real-time LabVIEW on an
embedded processor board to control an inverted pendulum
cart. Searches of controls literature has not yielded
applications of a laboratory based on a PC running
LabVIEW RT connected to a Windows machine hosting the
user interface.

The introductory undergraduate controls class in the
Mechanical and Nuclear Engineering (MNE) Department at
Kansas State University has had a laboratory component for
nearly two decades. During that time, there have been
significant changes in both computer software and hardware
within the lab. In the current version of the laboratory
organization, the students meet weekly and perform a series
of fourteen laboratory exercises that closely parallel the
lecture. The laboratories utilize a brushless DC motor stand
that had been previously controlled by an embedded DSP on
a motion control card sitting in the PCI bus of a PC. The
DSP provided hard real-time control with a 10 kHz sample
rate. This rate was chosen because it is appropriately faster
than the motor, amplifier, and sensor dynamics. The
controller was written in C and the compiled code
downloaded from the PC. The user interface running on the
host PC was written in C++. Communication with the

A

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

WeA11.2

978-1-4244-7425-7/10/$26.00 ©2010 AACC 384

embedded DSP was implemented using a set of drivers
provided by the manufacturer which are no longer standard
products and not currently supported. The C programs were
written and the motor stands built in 2002 and have required
little maintenance since. However, the continued use of
unsupported drivers in new operating systems, the expense
and maintenance of a cross compiler for the DSP, and the
availability of real-time solutions in more general purpose
software packages that are commonly available in the
academic environment (such as LabVIEW) provided
motivation to consider alternative architectures.

The constraints for a new controller system were:
1) A controller that was flexible and easy to maintain from

one operating system version to the next.
2) An economical controller implementation.
3) A system capable of 10 kHz hard real-time sample rate.

The task of modifying and debugging C code each time it
is necessary to improve and/or maintain the controller and
the controller interface is bothersome. The software for the
embedded DSP was written “in house”, and as a result met
specific needs. A software tool that generates the controller
code might not produce efficient code resulting in
benchmarks such as a desired sample rate not being met.
Modifying the code produced by the software tool to
achieve the specific benchmarks might not be
straightforward. Several options were examined before
selecting the new lab development direction.

Fig. 1. Annotated picture of Motorlab hardware

An honors student project in the fall of 2007 showed that

the same control provided by the DSP could be achieved
using a PC running real-time LabVIEW from National
Instruments. A significant benefit of this approach is that
both the controller program and the user interface are
created through the same graphical programming means.
Since the submission of that honors project, the software has
been perfected and sufficient hardware purchased to
incorporate the real-time controller in each of the eight
stations of the controls lab. These software and hardware
revisions are being implemented in our laboratory during the

spring 2010 semester. The real-time PC uses an operating
system that is similar to the original PC DOS. The real-time
PC communicates asynchronously with the user PC directly
through Ethernet. The user interface was created with NI
LabVIEW to resemble the original C++ interface. Because
the real-time PC does not need to support Windows, a
monitor, a mouse, or a keyboard, the hardware requirements
for the real-time PC are minimal. In fact, the PCs used in
the lab prior to a regularly scheduled update of the
computers are used as the real-time PCs.

II. ORIGINAL MOTORLAB SYSTEM
The original Motorlab system was constructed in the

summer of 2002 and the laboratory was equipped with 10
identical systems. While it is not the focus of this paper, the
new system closely models it and utilizes much of the
original hardware. The major components of this system are:
1) Brushless motor: LA052-040E from Shinano Kenshi
2) Amplifier: Model 503 DC brushless servo amplifier

from Copley Controls
3) Load encoder: RCML15 low profile encoder from

Renco Encoders, Inc.
4) 24 Volt DC power supply
5) Motion control card: MC4000 DSP Motion from

Precision MicroDynamics, Inc. (PMDi)
All of these parts are still currently available at a

relatively low price with the exception of the power supply
and the motion control card. The specific manufacturer of
the power supply is unimportant, and in fact a very
inexpensive surplus power supply was used in the original
system. The most expensive piece of the system, the
MC4000 motion control card, is still available, but it is

currently sold with proprietary software for the Analog
Devices SHARC DSP already loaded. In the original
system, custom control software was written at KSU using a
cross compiler from Analog Devices and utilities provided
by PMDi were used to download the programs to the card
and interface with the host computer through dual-port
memory; these utilities served their purpose, but they are not
standard products of PMDi. The authors greatly appreciate
the support of PMDi during the development of the original
Motorlab system.

ikT t=

2b

1θ

sk1b

2θ

1J
2J

DSP Card

2121 ,,, ωωθθ

ci
i

1ωbk
+

_

R L

V
24 V Supply,

and Motor
Amp with

Current Control

Fig. 2. Closed Loop Control Schematic of original Motorlab System

The Motorlab system includes two position sensors on the
apparatus. The position of the motor shaft is measured
using the encoder supplied with the motor and the position
of the load inertia is measured using the load encoder. In
addition, the velocities of the two inertias were measured
using hardware on the MC4000 motion control card that

385

accurately measures the time between pulses coming from
the encoders, a capability that is difficult to match in general
purpose computer interfacing hardware. The motor
amplifier has an analog control loop that measures and
controls the electric current in the motor windings. This
results in what is commonly known as a “torque controlled”
motor. The bandwidth of this loop is approximately 400 Hz.
While it would be possible to tune the amplifier to obtain a
higher bandwidth it was left low intentionally to enable

observation of the loop dynamics with a 10 kHz sample
frequency. The sample frequency was chosen so that the
limitations of the various sensors (i.e. time delays) and
components (i.e. bandwidth) could be demonstrated without
the sample rate being a limitation. The DSP motion control
card was interfaced to the motor amplifier through a ±10V
analog signal from a digital to analog converter (DAC) on
the card. By varying the magnitude of this voltage from the
DAC, the current in the motor is varied. This voltage, which
is proportional to the controlled current, serves as a current
command for the current control loop in the amplifier. An
additional sensor, not shown in the schematic, is the current
sensor in the amplifier. This sensor was also read by the
DSP card, using an analog to digital converter (ADC).
Although this signal is not used in the control loops on the
DSP card, it is recorded for data analysis.

Several different configurations of the system can be
utilized in experiments. Either the motor or load encoder
can be used for control loop feedback, with a selection in the
user interface. The motor encoder is a collocated sensor
while the load encoder is a non-collocated sensor.
Additionally, the mechanical system can be changed with
the lock down screw and spring coupling. Also, a choice
can be made between velocity control and position control
by selecting the appropriate control program. The
mechanical models shown in Fig. 3 can be realized with this
system and further dynamic variations achieved through
choice of position control, velocity control, or open loop
control, and through choice of the feedback sensor,
providing many different variations for the exercises.

In the original software, there were three different
programs used to control the Motorlab hardware. Each

program consisted of a GUI interface that ran on the host PC
and a low-level control program that ran in the DSP. The
host software was written in the Borland C++ Builder
environment and the DSP software was written with a cross
compiler for the SHARC DSP from Analog Devices. An
example (the position control program) of the host GUI is
shown in Fig. 4. The PC’s processor and the DSP
communicate over the PCI bus in the host computer using
dual-port memory. A PID controller was used in the two
programs that implemented closed loop control.
Additionally, the user has the option of including
feedforward velocity and acceleration gains. In the open
loop program the feedback sensors are not used for closed
loop control. Also, the DAC output from the motion control
card to the motor amplifier was determined directly by the
wave command (square, triangle, etc.) buttons and the jog
buttons on the user interface. In the position (velocity)
control program the feedback sensors were used to close the
position (velocity) control loop. The DAC output from the
motion control card to the motor amplifier was determined
by the controller algorithm.

Fig. 3. Variations on the mechanical model III. NEW MOTORLAB CONTROLLER

In order to implement a system that could be easily
upgraded and maintained with operating system upgrades, a
solution was created based on National Instruments
LabVIEW and LabVIEW Real-Time. LabVIEW Real-Time
is a hard real-time operating system that can be installed on
many targets, including properly outfitted desktop PCs.
National Instruments regularly updates LabVIEW, which
ensures the laboratory control program can be kept up-to-
date with computer hardware and operating system
upgrades. By replacing the DSP card with a desktop
computer, a cost-effective alternative to purchasing specialty
systems or commercial devices has been created that
satisfies the development constraints.

The new system offers the benefit that in the event the
host program needs to be modified, the MNE Department
maintains a current site license for LabVIEW allowing the
host program to be easily modified and re-deployed;
previously, modifying the user program would have required
the department to find an older copy of Borland or purchase
a new license for a program that would be used for a single
purpose. From the students’ point of view, there is very
little change from the system that uses the DSP card and the
system that utilizes a dedicated real-time PC. Due to the
nature of programming in LabVIEW, the existing user
interface was easily replicated and improved as shown in
Fig. 5. The button layout was changed to incorporate the
three control scenarios into one user interface, instead of
three separate programs. To allow the students to change
the PID gains directly (instead of opening a menu) the
buttons were rearranged.

Also, functionality was added to make data collection of
step responses easier for the students. Previously, while

386

running a square wave students had to turn on ‘Store Data’
and then click ‘Save Data’ to capture the pertinent data. In
the new system, students need only click ‘Auto-Save

Square’ and the program calculates when the data buffer has
reached capacity and saves the data on the host machine
automatically, without further input from the user. Another
data-saving simplification implemented is the ‘Log Data’
button, replacing the ‘Store Data’ and ‘Save Data’ buttons.

The laboratory was recently remodeled and student
workstations were upgraded. As a result of this upgrade, the
previous desktop computers were made available to use as

real-time targets for controlling the motor stands. These
machines possess hardware characteristics that are useful in
real-time targets such as Intel processors, floppy disk drives
(useful for LabVIEW Real Time software installation), and
BIOS settings that allow the SATA hard drive to operate in
‘legacy’ mode. Network Interface Cards containing Intel
chipsets and NI PCIe-6361 X-series Multifunction DAQs
were purchased to complete the real-time motor stand
controller. These purchases were necessary to meet the

communication requirements of LabVIEW Real-Time and to
give the PCs the ability to interface with the motor stands.
To complete the system, NI PCB connector blocks were
purchased and cables were fabricated to connect the X-series
DAQ to the motor stand.

The real-time code is implemented in three primary
sections: initialization, the control loop, and the
communication loop. During initialization the real-time PC
establishes default values for variables and commands and
starts the tasks needed for the lab apparatus, such as setting
the channels and parameters for the amplifier switch, motor
command, and encoders. The dual-core processors in the
real-time targets are able to be programmed independently
with LabVIEW, allowing the two loops of the real-time code
to each run on a dedicated core. The control loop produces
the command waveform, performs the control algorithm,
sends the command to the motor, and records the data from
the encoders. It is worth noting that without the hardware
timers available on the DSP, the new system required the
implementation of an observer or a low pass filter to
minimize velocity signal noise. All of these tasks must be
accomplished at the specified rate of 10 kHz. Initially, there
were concerns that the real-time system would not be able to
achieve the control rate demonstrated by the DSP card.
However, thorough testing of the system and streamlining
the code by reducing unnecessary communications with the
host PC, the control rate was measured to be 10 kHz,
duplicating that used by the older lab system.
Simultaneously, the communication loop operates at a
slower rate and manages the data and command transfer
from the UI to the control loop, which allows the control
loop to be streamlined and run deterministically. All of the
communication between the host PC and the real-time PC is
conducted over a crossover Ethernet cable.

Fig. 4. Host position control GUI for the original lab setup.

Fig. 5. Host GUI for new Motorlab control program.

IV. BRIEF DESCRIPTION OF LABORATORY EXPERIMENTS
There are fourteen laboratory assignments associated with

the introductory level controls course in the MNE
Department. These laboratories progress from the
fundamentals of modeling dynamic systems with differential
equations and transfer functions to detailed analysis and
design of closed loop control systems using methods from
the time-domain and frequency domain. This progression is
coincident with the topics in the lecture portion of the
course. All of the labs make use of data from physical
systems, solidifying difficult theoretical concepts for the
students.

Intro Laboratory: This is an introduction to the Motorlab
apparatus and software and to MATLAB. The students
become familiar with both in this lab as they are used
throughout the semester.

Laboratory 1: Using constant motor current inputs to
create constant velocities, the students experimentally
determine an approximation for the viscous friction
coefficient of the brushless motor system shown in the upper

387

left hand corner of Fig. 3. Then the students use this
coefficient together with other motor parameters to predict
the system response to an initial condition (initial velocity)
in MATLAB and compare to the measured response.

Laboratory 2: The students are required to experimentally
determine the coefficients for the plant model of the motor-
and-spring system shown in the upper right hand corner of
Fig. 3. They are able to determine the inertia from the motor
specification sheet and estimate other model parameters
using experimental data such as the steady state deflection
obtained from a constant motor current/torque. The students

also compare the computed step response of their model to
experimental data from the actual system.

Laboratory 3: In Lab 1, the students find a linear estimate
of viscous friction in the motor. It is obvious from the data
that the friction also has nonlinear effects. In this lab the
students explore these nonlinear effects through simulation
in SIMULINK. They use a model which includes a high
coefficient of friction at low velocity and a lower coefficient
at high velocity to simulate the nonlinear friction. Using this
simulation, the students are able to generate a nonlinear
initial condition response for the velocity of the motor that
closely matches the experimental data in Lab 1.

Laboratory 4: In this lab the students experiment with a
proportional position controller, where the current command
to the motor amplifier is proportional to the error between
the actual position and the command. Also, they use a model
of the closed-loop position control system to predict the
system response. They compare the theoretical step
response with the actual response obtained experimentally
from the Motorlab for three different proportional controller
gains. Then they make connections between pole locations
and characteristics of the response such as the frequency and
decay rate of oscillations in the closed loop response.

Laboratory 5: Continuing their work in the previous lab,
the students use high values of the proportional gain, Kp.
This lab illustrates that there are always un-modeled, higher
frequency dynamics that will affect the response if they

"turn up the gains" too much. The students begin to learn
when it is appropriate to ignore these dynamics and also
how to account for them in control design without an exact
model.

For a low range of Kp values the students observe that the
predicted and measured performances are similar. However,
the students see that as the poles of the simple model move
farther from the origin of the s-plane it is necessary to
include dynamic effects from the amplifier to explain the
response. They verify the following rule of thumb: “Open
loop poles and zeros can be ignored when they are more
than 10 times larger in magnitude than the closed loop poles
that result from ignoring them.” They also note exceptions
to this rule such as lightly-damped open loop poles.

Laboratory 6: Motivated by the previous lab focusing on
“higher frequency dynamics,” this lab requires the students
to model the closed-loop current control system
implemented in the motor amplifier and to compare the
response of their model to experimental data acquired from
the system.

A schematic from the amplifier manufacturer is given in
the lab assignments and homework providing a functional
diagram of the amplifier for the brushless DC motor. It
implements closed loop current control of the motor using
operational amplifier circuits that the students analyze in a
homework assignment. The students develop a model of the
closed loop current control system using the schematic and
rudimentary explanations of the power electronics. The step
response of the model gives nearly an exact match to the
step response obtained from experimentally from the system.

Laboratory 7: In this lab, the students experiment with the
velocity control system of the Motorlab apparatus. It is
modeled simply, ignoring all higher frequency effects
beyond the first order model of the inertia and friction. At
this stage in the semester the students are capable of
performing many detailed calculations relating the closed
loop system to the open loop system. This simple model
provides an opportunity to reinforce many of these
calculations with real data and without confusion.

Laboratory 8: The students examine the closed loop
response of a fairly complex, higher order mechanical
system, where there are many significant poles and zeros,
and where there are substantially dominant poles and zeros
with less dominant poles and zeros causing superimposed
effects in the response. This mechanical system includes the
inertia coupled by a spring, as shown in the bottom of Fig. 3.
The students use full PID control with a position controller
for this system. For most of the lab the students use the
motor encoder for feedback, but they also use the load
encoder for feedback, demonstrating the destabilizing
effects of a non-collocated sensor. Independent of which
sensor is used for feedback, data from both sensors is
available from the experiments. Common to nearly all the
labs, the students are required to develop models for the
system, validate the model with experimental data, and make

Fig. 6. Diagram of new Motorlab control flow.

388

connections in the theory from the lecture part of the course.
Laboratory 9: In labs 4 and 5 the students experimented

with a proportional (P) controller for position control in the
Motorlab apparatus and found that as they raise the gain of
the P controller that better control of the system can be
obtained, but this improvement is limited. The gain can
only be raised so much before the response becomes very
oscillatory. Furthermore, the settling time cannot be
improved. In this lab the students compare the proportional
controller to a proportional-derivative (PD) controller. The
PD controller adds a zero to the open-loop TF, changing the
shape of the root locus by pulling the poles into the left half
plane. This is the students’ first experience of adding
dynamics to the controller to shape the root locus in the
design process.

Laboratory 10: In this lab the students experimentally
determine five data points for the frequency response of the
motor-and-spring system of the Motorlab (upper right hand
corner of Fig. 3). Then the students compare their
experimental response data to the theoretical frequency
response from a transfer function they develop, tweaking the
parameters of the model to obtain a close match. Using sine
wave inputs to the motor current, the students begin the lab
by experimenting to find the resonant frequency of the
system. While the students are searching for resonance,
they begin to understand the basics of frequency response
including amplitude ratios and phase shifts.

Laboratory 11: The students experiment with frequency
response design for the velocity control system using a PI
controller. They simply adjust “the gain,” not moving the
zero of the PI controller. Then using their data and models
they make connections between closed loop bandwidth and
open loop crossover, between bandwidth and the dominant
closed loop poles and the speed of the step response, and
between the root locus and frequency response design
techniques.

Laboratory 12: This is an investigation of the importance
of low-frequency gain on the tracking capability of a control
system. The students use two PID controllers in the position
control system of the Motorlab apparatus, both with the
same crossover frequency and bandwidth, but with different
open-loop low-frequency gain. The students compare the
tracking capabilities of the two closed-loop systems using
motions generated from trapezoidal velocity profiles. This
is not only an opportunity to reinforce an important
frequency response design goal, but also to introduce
command shaping, which is important in industry.

Laboratory 13: The students tune a PI controller for the
velocity control system of the Motorlab apparatus. The
nominal dynamics of the plant, Gm, are known to be first
order and therefore a PI controller works well. To tune the
controller the students pretend to 1) know the structure of
the nominal dynamics, 2) not know specific numbers for the
model (just the structure), and 3) not know the higher
frequency (limiting) dynamics, as is often the case when

tuning a controller. The students use numerical estimates of
the system parameters obtained from previous labs, not to
tune the controller, but to generate Bode plots from the
models at selected points in the tuning process to understand
what they are doing during tuning process.

Throughout the semester, as the laboratory experiences
reinforce the concepts of the course, the instructors observe
that students progress from a fear of differential equations in
many cases, to capabilities in relating complex relationships
to real engineering systems.

V. CONCLUSIONS
In this paper, an undergraduate control laboratory has

been described that consists of a brushless DC motor stand
and a PC running real-time LabVIEW using NI data
acquisition equipment. This laboratory setting has
undergone a significant upgrade using a cost effective
design. The 10 kHz sample rate real-time PC plus data
acquisition equipment can be realized for approximately
$2K per station while the motor apparatus requires about
$1K per station. These per station costs are very attractive
compared to the costs necessary to use specialty control
laboratory products. The software was developed with
LabVIEW 9.0 and is not compatible with previous versions
of LabVIEW. Inside the available zip file containing all of
the LabVIEW programs, the project file is
KSU_Controls_Lab.lcproj, the user interface is
KSU_Motorlab_HostUI, and the real-time controller is
KSU_Motorlab_RT. The zip files for this project can be
downloaded from:
http://www.mne.ksu.edu/research/laboratories/dynamic-systems-
controls-laboratory-1/motorlab

The authors gratefully acknowledge the contributions of
Victor Salazar, Edgar Martinez, and Jose Chavira in the
areas of drafting, part locating, and assembly; and also Nate
McCormick’s contribution of his original honors project.

VI. REFERENCES
[1] Astilean, A. and S. Folea, “Design and Testing in Laboratory

Environment of the Embedded Microsystem ECAM,” IEEE Int. Conf.
on Automation, Quality, and Testing, Robotics, pp. 442-447, 2006.

[2] Bailey, Fredric N. and Frederick M. Waltz, “A Hardware Digital
Controller for Undergraduate DDC Experiments,” IEEE Trans. on
Education, Vol. 18, No. 4, pp 195-198, 1975.

[3] Kapila, V. M.S. de Queiroz, and A. Tzes, “A Multi-disciplinary
Undergraduate Real-Time Experimental Control Laboratory,” Proc.
American Control Conference, pp. 3980-3984, 2000.

[4] Mrad, F., N. El-Hassan, S.E.-H. Mahmoud, B. Alawieh, F. Adlouni,
“Real- time control of free-standing cart-mounted inverted pendulum
using LabVIEW RT,” IEEE Industry Applications Conference,
2000, pp. 1291-1298.

[5] Ramakrishnan, V., Y. Zhuang, S.Y. Hu, J.P. Chen, C.C. Ko, B.M.
Chen, and K.C. Tan, “Development of a Web-Based Control
Experiment for a Coupled Tank Apparatus,” Proc. American Control
Conference, pp 4409-4413, 2000.

[6] Spong, M.W. “Control Education Crossing Department Boundaries,”
Proc. American Control Conference, pp. 992-996, 1999.

[7] Valera, A. J.L. Diez, M. Valles, P. Albertos, “Virtual and Remote
Control Laboratory Development,” IEEE Control Systems
Magazine, Vol. 25, No. 1, pp. 35-39, 25.

389

